Dijkstra算法【模板】

  • 时间:
  • 浏览:1
  • 来源:uu快3app_uu快3预测苹果

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算另有一个节点到许多所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在好多好多 专业课程中都作为基本内容有删改的介绍,如数据形状,图论,运筹学等等。注意该算法要求图中不地处负权边。

1.定义概览

先给出另有一个无向图

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比那我距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加中间上的权。

模板代码:

3.算法实例

现象描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

1)算法思想:设G=(V,E)是另有一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中不能另有一个源点,刚刚 每求得每根最短路径 , 就将加入到集合S中,直到删改顶点都加入到S中,算法就结速了了了),第二组为其余未选者最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应另有一个距离,S中的顶点的距离本来我从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

执行动画过程如下图

b.从U中选者另有一个距离v最小的顶点k,把k,加入S中(该选定的距离本来我v到k的最短路径长度)。

a.初始时,S只带有源点,即S={v},v的距离为0。U带有除v外的许多顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u全是v的出边邻接点,则<u,v>权值为∞。

d.重复步骤b和c直到所有顶点都带有在S中。

2.算法描述

2)算法步骤: